

terised by the following ^1H NMR bands, δ_{H} 7.98s, 7.38s, 6.72s, 4.64s, 3.64m, 3.52s and methyl groups

One of us (SMA) is grateful to the CSIR for a maintenance grant while carrying out this work

REFERENCES

- 1 Adesida, G. A. and Taylor, D. A. H. (1967) *Phytochemistry* **6**, 1429
- 2 Okorie, D. A. and Taylor, D. A. H. (1977) *Phytochemistry* **16**, 2029
- 3 Arndt, R. R. and Baarschers, W. H. (1972) *Tetrahedron* **28**, 2333
- 4 Bevan, C. W. L., Ekong, D. E. U., Halsall, T. G. and Toff, P. (1967) *J. Chem. Soc. (C)* 820
- 5 Connolly, J. D., Labbe, C. and Rycroft, D. S. (1978) *J. Chem. Soc. Perkin Trans. 1*, 285
- 6 Rao, M. M., Gupta, A. S., Singh, P. P. and Krishna, E. M. (1979) *Indian J. Chem.* **17B**, 158
- 7 Ragettli, T. and Tamm, Ch. (1978) *Helv. Chem. Acta* **61**, 1814
- 8 Taylor, D. A. H. (1979) *Phytochemistry* **18**, 1574
- 9 Srivastava, S. D. (1986) *J. Nat. Prod.* **49**, 56

Phytochemistry, Vol. 27, No. 4, pp. 1220-1221, 1988
Printed in Great Britain

0031 9422.88 \$3.00 + 0.00
© 1988 Pergamon Journals Ltd

PROTOLIMONOIDS FROM *TURRAEA NILOTICA*

DULCIE A. MULHOLLAND and DAVID A. H. TAYLOR

Department of Chemistry, University of Natal, Durban, R.S.A.

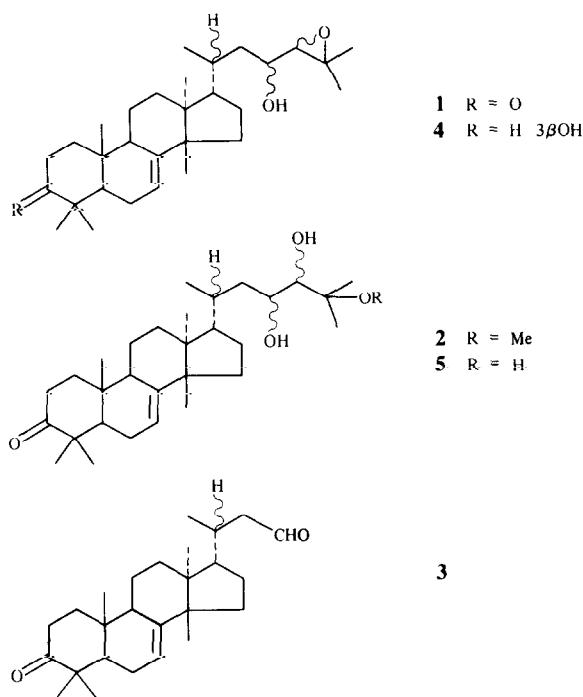
(Revised received 14 August 1987)

Key Word Index—*Turraea nilotica*, Meliaceae, protolimonoid

Abstract—*Turraea nilotica* has been found to yield a new protolimonoid, 24,25 epoxy-23-hydroxy-7-tirucallen-3-one, which we name niloticin, together with two closely related compounds. No limonoids were found.

INTRODUCTION

Turraea (Meliaceae, tribe *Turraeae*) is a rather variable genus, containing at the most recent delimitation [1] some 60-70 species of shrubs and small trees in the Indian Ocean area. We have recently shown [2] that *T. obtusifolia* (section *Euturraea*) contains the complex limonoid prieurianin, while *T. floribunda* (section *Rutaea*) contains simpler limonoids of the havanensin type. It would be interesting to know whether this difference is taxonomically significant or not; unfortunately although *Turraea* species are widespread they are nowhere common, or at least are inconspicuous, and correspondingly difficult to obtain. We now report examination of *T. nilotica* Kotschy et Peyr (also section *Rutaea*) collected and supplied by the scientific staff of the Kruger Park


RESULTS AND DISCUSSION

Extraction of pulverized stem of *T. nilotica* (wood and bark) with petrol gave an extract which yielded one major crystalline protolimonoid niloticin, and two minor ones, one crystalline, one amorphous; but no limonoids. The major product gave spectra suggesting that it was a stereoisomer of 24,25-epoxy-23-hydroxy-7-tirucallene-3-

one **1** (= 21 deoxy-melianone). The spectra were in general similar to those of melianone [3], showing the epoxide carbons δ_c 68.4d and 59.8s and the characteristic H-24 epoxide doublet (δ_{H} 2.67, $J=8.1$ Hz). However the hemiacetal signals associated with C-21 in melianone were missing, and instead there was a secondary methyl resonance (δ_{H} 0.96, $J=6$ Hz).

The presence of the epoxide was chemically confirmed by methanolysis, giving a 24-hydroxy-25-methoxy derivative **2**, the position of the hydroxy-epoxide was chemically confirmed by periodate oxidation, which gave a tetra-norraldehyde **3**. This leaves the stereochemistry undetermined. The most commonly occurring arrangement is that of melianone, with the tirucallol 20 α H and the 23R-24R configuration. However, both 24R and 24S configurations have been identified [4, 5], we have no evidence to show which is present in niloticin.

The second product, also crystalline but isolated in small yield, was a dihydroniloticin. The spectra were similar to those of niloticin, but instead of a ketonic carbonyl, showed an extra secondary alcohol. The ^1H NMR spectrum (δ 3.21, $W_{1/2}=14.4$ Hz) showed dihydroniloticin to be an equatorial alcohol; it is therefore the 3 β alcohol **4** corresponding to the ketone niloticin. It is interesting that protolimonoids, as for example turraean-

thin, often have the 3 β oxygenated configuration, whereas so far limonoid 3-alcohols always have the α -configuration. It is possible this may have biosynthetic significance.

The third compound, which remained amorphous, contained the elements of a molecule of water in excess of niloticin; and had lost the epoxide. Otherwise the ^{13}C NMR spectrum was identical. This compound is therefore the triol **5** obtained by hydrolysis of the oxide in niloticin, (δ_c 74.9s, 74.2d instead of 59.8s, 68.4d)

EXPERIMENTAL

Extraction *Turraea nilotica* wood and bark (3 kg, supplied by the scientific staff of the Kruger Park) was pulverized and percolated with refluxing hexane. The extract was partitioned with 95% MeOH, the MeOH diluted to 50% and extracted with CH_2Cl_2 and the latter evaporated, yielding a gum (5.4 g). Chromatography gave niloticin **1** as a crystalline solid (2.7 g), m.p. 149° [$\alpha_{D}^{23} = -70.9^\circ$] [Found, m/z 456, $\text{C}_{30}\text{H}_{50}\text{O}_3$ requires 456. δ_c 21.6.2s, 145.6s, 117.8d, 69.0d, 68.4d, 59.8s, 53.1d, 52.2d, 51.1s, 48.4d, 47.7s, 43.5s, 40.7t, 38.4t, 34.9s, 34.7t, 33.9t, 33.5t, 33.5d, 28.5t, 27.2q, 24.7q, 24.5q, 24.2t, 21.6q, 21.4q, 19.8q, 19.6q,

18.1t, 12.6q δ_H 5.32 (*m* H-7), 3.57 (*m* H-23), 2.67 (*d*, $J = 8.1$ Hz, H-24), 1.32, 1.32, 1.12, 1.05, 1.02, 1.00, 0.96 (*d*, $J = 6$ Hz) 0.81 (Me groups)]

Dihydroniloticin **4** was also crystalline, mp 175°, obtained in small amount [Found, m/z 458, $\text{C}_{30}\text{H}_{50}\text{O}_3$ requires 458. δ_c 145.6s, 118.1d, 79.2d, 69.3d, 68.6d, 59.8s, 53.3d, 51.2s, 50.7s, 49.0d, 43.6s, 40.8t, 39.0t, 37.3s, 36.1t, 35.0d, 34.0t, 33.9t, 33.6d, 28.8t, 27.7q, 27.2q, 24.9q, 24.0t, 21.7q, 20.0q, 19.8q, 18.1t, 14.75q, 13.1q δ_H 5.26 (*m* H-7), 3.51 (*m* H-23), 3.21 (*m* $W_{1/2}$ 14.4 Hz, H-3), 2.62 (*d*, $J = 8.1$ Hz, H-24), 1.30, 1.30, 0.95, 0.95, 0.91 (*d*, $J = 6$), 0.84, 0.79, 0.72]

The triol **5** remained amorphous. [Found m/z 474; $\text{C}_{30}\text{H}_{50}\text{O}_4$ requires 474. δ_c 217.0s, 145.7s, 117.8d, 74.9s, 74.2d, 69.6d, 53.7d, 52.2d, 51.0s, 48.3d, 47.8s, 43.4s, 40.3t, 38.4t, 34.9t, 34.8s, 33.9t, 33.7t, 33.6d, 28.3t, 27.2q, 27.2q, 26.1q, 24.7q, 24.4t, 24.2q, 21.9q, 21.5q, 18.8t, 12.7q δ_H 5.18 (*m* H-7), 4.0 (*m* H-23), (3.35d, $J = 8$ Hz, H-24), 1, 25, 1.25, 1.20, 1.12, 1.05, 0.96 (*d*, $J = 6$ Hz), 0.95, 0.75]

Methanolysis of niloticin Niloticin **1** (223 mg) was refluxed with sulphuric acid (50 ml, 1 N in 50% MeOH) for 0.5 hr. The product **2** isolated with ether, was amorphous. Acetylation gave a crystalline diacetate (149 mg) mp 174–175°. [Found m/z 572, $\text{C}_{33}\text{H}_{50}\text{O}_6$ requires 572. δ_c 216.1s, 170.1s, 168.4s, 145.6s, 117.3d, 76.1s, 75.0d, 69.6d, 53.5d, 52.1q, 51.0s, 49.4d, 48.3d, 47.6s, 43.4s, 38.2d, 38.0t, 34.8s, 34.7t, 33.8t, 33.7t, 32.9t, 27.6t, 27.2q, 24.4q, 24.2t, 22.5q, 21.7t, 21.4q, 21.1q, 20.9q, 20.6q, 18.2q, 18.2q, 12.6q δ_H 5.46 (*m* H-23), 5.35 (*m* H-7), 5.0 (*d*, $J = 2$ Hz, H-21), 3.20 (OMe), 2.16, 2.05 (OAc), 1.17, 1.16, 1.11, 1.05, 0.99, 0.98, 0.96 (*d*, $J = 6$ Hz) 0.81 (Me)]

Periodate oxidation of niloticin Sodium periodate (400 mg) in water (1.5 ml) and perchloric acid (70%, 1 drop was added to niloticin **1** (211 mg) in dioxan (20 ml), and left 1 hr. The aldehyde **3** (129 mg), isolated with ether did not crystallize [Found m/z 384, $\text{C}_{26}\text{H}_{40}\text{O}_2$ required 384. δ_c 216.4s, 203.0d, 145.6s, 118.0d, 52.7d, 52.3d, 51.2s, 50.8d, 48.4d, 47.7s, 43.6s, 38.4t, 35.0s, 34.8t, 33.9t, 33.5t, 31.9t, 28.3t, 27.3q, 24.5q, 24.3t, 21.8q, 21.5q, 19.6q, 18.1t, 12.7q δ_H 9.68 (*m* H-23), 5.24 (*m* H-7) methyl region unresolved]

Acknowledgement—This work was supported by a grant from the Research Grants Division of the CSIR

REFERENCES

- Pennington, T. D. and Styles, B. T. (1975) *Blumea* **22**, 457
- Akinniyi, J. A., Connolly, J. D., Mulholland, D. A., Rycroft, D. S. and Taylor, D. A. H. (1986) *Phytochemistry* **25**, 2187
- Lavie, P., Jain, M. K. and Kirson, I. (1967) *J. Chem. Soc. (C)* 1347
- Connolly, I. D., Labb  , C., Rycroft, D. S. and Taylor, D. A. H. (1979) *J. Chem. Soc., Perkin Trans. I* 2954
- Chan, W. R., Taylor, D. R. and Yeo, T. (1971) *J. Chem. Soc. (C)* 2662